[Python] Missing Data(NA, NaN) 결측값 처리
안녕하세요. 우주신 입니다. 데이터 분석에 있어 가장 중요한 과정은 결측값 및 특이값을 얼마나 잘 처리하는지의 유무에 달려 있다고 생각하는데요, 오늘은 pandas를 이용하여 NA, NaN 데이터를 처리하는 가장 기본적인 몇가지 방법을 포스팅 하겠습니다. df.dropna(), df.fillna() 우선, 결측값이나 특이값을 처리하는 3가지 방법이 있습니다. 1. 무시한다 2. 제거한다 3. 다른 값으로 대체한다 먼저, pandas와 numpy를 이용해 NaN 값이 포함된 데이터프레임을 만들었습니다. import pandas as pd import numpy as np df = pd.DataFrame([[1, np.nan, 2, np.nan], [3, np.nan, 4, 5], [5, 6, 7, np.n..
2017. 12. 6.